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Singular integral equations of the first kind with a symmetric kernel having a logarithmic 
singularity are studied. An algorithm based on the expansion in Chebyshev polynomials of the 
first kind is presented. The method is applied to two-dimensional wave-scattering and 
convergence is demonstrated. 

1. INTRODUCTION 

Two-dimensional wave-scattering by thin open scatterers leads to integral 
equations of the form 

I 
1 

F(f){B(s, f) In /s - fj + C(s, f){ df = g(s), Is/ < 1, (1.1) 
-I 

where F(f) is the unknown, g(s) is the forcing function, B(s, t) and C(s, t) are 
symmetric regular kernels (B(O,O) # 0). Because of the weak singularity of the 
kernel, Eq. (1.1) has not attracted much attention. MacGamy [ I] discussed the 
analytic properties of the solution F(t). However, his work was restricted to analytic 
forcing function and kernels. Hayashi ]2] studied thoroughly the scattering problem 
which leads to Eq. (1.1). He suggested converting (1.1) into a Cauchy-type integral 
equation, and using the well-developed theory of these equations ]3 1. 

Following McCamy and Hayashi we assume that the solution F(f) is Holder- 
continuous in (-1, I), and f(t) = (1 - f’)“* F(t) has a continuous extension to 
r = f 1. We reformulate equation (- 1, 1) in the form 

.t 

j 
f(t) 

-, (1 -tZ)“Z {In Is - f / + Dfs, t)) dt = g(s), /s/ < 1. (1.2) 

In this work we study the solution of (1.2) by expansion in Chebyshev polynomials 
of the first kind. This method has been applied by Gladwell and Coen ]4] to the 
solution of microstrip problems. Recently, Moss and Christensen [5] have studied the 
special case of scattering by a strip by the same method. They have discussed some 
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theoretical aspects concerning the convergence and the stability of the method. 
Independently, the author has used the same method for wave scattering by a general 
smooth open obstacle [6]. 

The present work is essentially a generalization of the one presented by Moss and 
Christensen IS]. While in the strip problem D(s, r) (1.2) is a function of Is - tj only, 
this is not true generally for other open scatterers. Therefore, all theoretical and 
numerical considerations which are based on a convolution-type kernel cannot be 
utilized. 

Although we formulate the theory quite generally, we refer specifically to the 
scattering of acoustic waves by a hard thin obstacle; or equivalently, the scattering of 
an E-polarized electromagnetic wave by a thin conductor [2,6]. Let p(s) = 
(x(s), y(s)), Is[ < 1 define the scatterer, then the kernel of our integral equation is 
Ha’@ ip(s) - p(r)!), where k is the wave number. However, 

(j7c/2) Hf’(z) = In z t {J,(z) - 1) In z - Q(z) 

+ U@N 1 - (2~/~)(~ - In 7-N 4(z). 

where y is the Euler constant and 

(1.3) 

(1.4) 

Comparing (1.3) with (1.2) we find 

WV 4 = 1nW /P(S) - ~(~)i)/l s - t I) - Q(k I p(s) - P(M 

+ MMs) - PWD - 11 In IP(s) - ~(4 

- (&W 1 - Pjl7W - In 211 Jdl~(4 - PW (1.5) 

We assume in addition that 

W, t> = k I P(S) - PN’I s - f I (1.6) 

is di~erentiable in the square Is/, / tl< 1. So that 

D(s, 1) = (s - t)* L(s, f) ln 1s - fj + M(s, t), (1.7) 

with L(s, t) and M(s, t) bounded differentiable functions in the square 1.~1, / tl< 1. 
With these kinds of kernels in mind we proceed to develop systematically the 

theory for the solution of Eq. (1.2). We further discuss the numerical details of the 
method, and present several numerical examples. 
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2. THEORY 

The form of Eq. (1.2) naturally suggests that we look for our soiutionf(f) in the 
Hilbert space L’(T, w) of al1 functions square integrable on r= (-1, I) with respect 
to the weight w(x) = (I - x2 f “’ It is well known that the Chebyshev polynomials . 
of the first kind (T,,(x)} comprise a complete orthogonal set in L*(T, IV). Moreover, 
the series Cfo y,f, T,,(x) (y,, = 0.5, yn = 1. n > 0) with 

(2.1) 

converges in the mean to the functionf(s). The norm in this Hilbert space is simply 

We are specifically interested in integral operators within L’(T. 1-t’) of the form 

(2.3) 

We restrict the discussion to compact completely continuous operators which obey 
the sufficient condition 

(2.4) 

We represent these operators by matrices, using the Chebyshev polynomials as our 
basis functions. The most significant property of these matrices is that they are 
almost finite. This can be stated in 

THEOREM 1. Let .Z’ (Eq. (2.3)) be an integral operator that obeys condition 
(2.4), then the double expansion 

K,#&, t) = 9 2 YmYnLl T,(s) T,St) (2.5) 
m-o n-n 

with 

K =Q-’ J 1 
1 m t) T,(s) T,(t) l?f” 7i2 -,‘-1 (1--*)“*(I-t2)“2dSdt (2.6) 

converges in the mean to K(s, t) as M, N + co. That is, for any c > 0 there are M,, 
and No such that for every M > MO and N > No 

I I 

1 j 
lK(s, t) - h&. t)l’ ds dt < E 

--I -, (1 - s*)‘/2(1 - t2)‘!2 . (2.7) 
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Also 

,,iy,/‘=!g z $ YmY, IWmX < 00. (2.8) 
m-0 n 0 

We study now the special operators (1.2), (1.5) under discussion. We state the 
following result proven by Moss and Christensen (5 I: 

THEOREM II. The integral operator .wb 

-1 ,v;/if= 
! 

ln Is - tlf(t) dt 
-, (1 - t2)“? ’ 

f E L?(z-. w) 

is a diagonal completely continuous operator. That is. 

rdT,(t)= \’ ‘n;fI;!;!t) dt = -xv,, T,,(s) 
1 

(2.9) 

(2.10) 

with v. = In 2, v, = l/n, n > 0. 
Equivalently, 

In Is - t/ - -2 f ynv, T,,(s) T,(t). (2.11) 
tl:O 

Clear[v, 

We find that iff E L*(T, w) 

.CY/of ‘v --71 c y,v,f,T,(s). (2.13) 
n-0 

so that the range R(,do) is the subspace of all functions g(s) for which 
CTEl n2 I g,12 < co. 

We extend Theorem II following the form (1.7) of the regular part of the kernel 
D(s, t). 

THEOREM III. The integral operator iy/ 

(2.14) 

obeys (2.4) if L(s, t) is bounded in the square Is /, 1 t 1 < 1. 
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This is obvious since 

where L, is the bound of L(s, t). Therefore D(s, t) (1.7) is a completely continuous 
operator that can be expanded in Chebyshev polynomials. 

As a simple example consider the case of L(s, t) = constant. We can easily prove 
that the operator. P 

<Y-f =j 1 (s--t)*w--I f(t)dt 
-1 (1 - ty ’ 

is represented by a matrix J whose elements are 

J,, = Y n+1~n+1+~n--1vn-I-2~nvn’ Jn,n+2=Jn+2,n=-fJnt1 

For n > 1 we can simplify (2.17) to 

Jnn = 

2 1 

n(n’ - 1) ’ 
J n,n+* =Jn+2,n=- n(n + l)(n + 2) * 

.nc 

(2.16) 

I’ 
(2.17) 

(2.18) 

We can show that for a smooth enough function L(s, t) the matrix elements W,,,, 
decay at least as n-“(m-‘) for n % 1 (m $ 1). 

We shall see that this difference between the matrix elements of M; and those of T 
leads directly to a simple regularization scheme for the solution of our integral 
equation (1.2). 

It is clear from Theorem I that the integral equation .dO f = g has a solution in 
i*(r, w) if g E L*(T, w) and C,“, n* 1 gn12 < co, where g, are defined by (2.1). The 
solution can be presented in the form 

f(t) - - L c + g, T,(t). 
71 n-o II 

Equation (2.19) defines essentially a transformation i : R(L&o) + L*(T, w) such 
that f = Sg [2]. 

We turn now to the general case (1.2). Define 

rrf = \’ D(s, t)f(t) dt 

. 1 (1 - t*y* 

and 

(2.20) 

d=.doO$. (2.21) 

We state now 
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THEOREM IV. If 99 is co~~~~t and the null space of 3 + YL!S is tri~i~l~ the 
e4~~tion &f = g with g E R(rPP,) has a unique solution f = (7 + .YLS)- ’ 5$. 

Proo$ Since the null space of .Y is trivial, the equation (do + @)f= g is 
equivalent to (3 + 99)f = Y8- Clearly 9’8 is bounded, and therefore R(M’) c 
R(L&O). The existence of an inverse (.Y’ + .U‘L?)- ’ follows from the well-known 
Fredholm theorems [ 71. 

The elements of the operator ,sc’P are simply given by 

(.Y~P;lon = 2 In 20,,, (9P),, = g?zDmn. (2.22) 

We finally prove a sufficient condition for ,9 Y to be a compact completely 
continuous operator. 

THEOREM V. I Tic”L% is a completely eontin~~us operator if the operator ,X, 

fl=j;, (1 -t2)l12 aD’as f(t) dt 

obeys condition (2.4). 

ProoJ Since @ is a completely continuous operator 

W, f) - f : Y~Y,$.),, T,(s) T,(t). 
m=o n=O 

Therefore, 

aD(s, 0 F ? ynmD,,U,- i(S) T,(t). as -- m=l zo 

(2.23) 

(2.24) 

(2.25) 

where U,(s) are the Chebyshev polynomials of the second kind. Equivalently, 

m>l, n>o. (2.26) 

Therefore. 
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3. NUMERICAL RESULTS 

An algorithm based on the previous theory has been written for the solution of 
two-dimensional scattering problems [ 61. The expansion in Chebyshev polynomials 
has been accomplished by the Gauss-Chebyshev quadrature. That is, 

g, =L (_’ g(s) T,(s) _ 
t 1 

2 
;” g(xi) Tm(x,J 7r ._, (1 -S?)i:? - MS 1 ;T;, (3.1) 

and 

where 

(3.3) 

We construct our solution according to Theorem IV. using in addition Eqs. (2.22) 
and (2.19). 

Obviously, all infinite representations are approximated by finite ones (Eq. (2.5)). 
The finite dimension N is increased until convergence is achieved. We note that 
because of the expansion in orthogonal polynomials any N X N matrix is a submatrix 
of a larger (N + N’) x (N + N’) matrix. Thus, only the additional elements of the 
larger matrix have to be calculated. Also, the inversion of an (N + N’) X (N + N’) 
matrix can be accomplished by partitioning, using the known inverse of the N x N 
matrix. 

In the sequel we present the solution of integral equations (1.2) with kernels given 
by Eq. (1.5) for different scatterers p(s). The first example is scattering by a strip 
p(s) = (ua, 0). The integral equation is 

The parameters chosen for this example are a = n/2, k,u = 37~. In Table I we 
present the expansion coefficients f, of the unknown functionf(s) for N = 6. 10, 14, 
respectively. Convergence is fast, and for all practical applications the N = 10 
accuracy is sufficient. 

The second example is scattering by a semicircular cylinder, p(s) = (a cos(nr/2), 
a sin(;rct/2)). The integral equation under consideration is 
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TABLE I 

Chebyshev Expansion Coefficients (f,} for Plane-Wave Scattering by a Strip (k!+= 3~) 

n N=6 N= 10 N=14 
.il__ -__-___ -.-.~- _....-. ---.- -.-- -. 

0 3.0002 - j.23184 2.9988 -j.22934 2.9988 - J.22933 
2 -1.9622 -_- j.23403 -1.9619 -j.22652 m-1.9618 -j.22651 
4 --0.29185 - j.31923 -0.21424 -j.30992 -0.21422 - j.30994 
6 -0.~969-J.10388 0.04900 -j.lSi 10 0.04898-j.15115 
8 0.07902 +j.O5033 0.07895 + j.05042 

10 -0.03445 t j.00032 -0.03346 - j.00003 
12 0.00646 - J.00207 
14 ~0.~72~~00045 

TABLE II 

Chebyshev Expansion Coeffkrents (J,,} for Plane-Wave Scattermg 
by a Semicircular Strip (ka = 71) 

n N=8 N=l2 N= 16 

0 -0.39469 +j.33896 -0.39468 + j.33897 -0.39468 +1.33897 
1 -0.25970 +J.50436 -0.25971 tj.50428 -0.25971 tj.50428 
2 -0.35534 + j.l.5328 -0.35532 t j.15329 -0.35532+j.15329 L 
3 -0.07122 -j.47570 -0.07743 -j.47572 -0.01143 ---j.47572 
4 0.42156 -- j.22968 0.42160- j.22973 0.42160-/.22973 
5 0.40825 t j.23431 0.40796 + j.23488 0.40796 t j.23488 
6 -0.13362 +j.33987 -0.13376 t j.33971 -0.13376 + j.33971 
1 -0.25473 - j.05907 -0.24840-j.05913 -0.24840 '-'j.05913 
8 0.02437 - j.17999 0.02436 - j.17725 0.02436-j.17725 
9 0.10604 -+ ~00960 0.10603 i- J.~960 

10 -0.00291 t j.06149 -0.00291 + j.06 149 
II -0.03368 - j.00128 -0.03348 -- j.00126 
12 0.00027 - J.01735 0.00027 -j.O1726 
13 0.00856 + j.OOOiO 
14 -0.00001 t j.00409 
15 -0.00189 - j.00001 
16 0.00001 .-. j.00085 

Here a is the radius of the circle chosen such that ka = n. A nonsymmetric 
excitation is studied (CL = 42). In Table II we summarize the expansion coefficients 
for N = 8, 12, 16, respectively. Here the odd modes are also excited. Again good 
convergence is demonstrated. 

Our final example is the scattering by a parabolic reflector, p(s) = (US wqs’). The 
integral equation to be solved is 

581/51/Z-10 
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TABLE III 

Chebyshev Expansion Coefficients (f, 1 for Plane-Wave Scattering 
by a Parabolic Reflector (9 = I. kn = 27~) 

n N=8 N= I2 N= 16 

0 
2 
4 
6 
8 

10 
12 
14 
16 

0.40624 - j.23248 0.40701 - j.23465 
-1.8807-j2.0152 -1.8844 -j2.0154 

2.4033 + j1.1770 2.4043 + jl. 1770 
1.0739 t j.3.5754 1.0613 + j.36836 

-0.37647 - j.31814 -0.38720 - 1.30761 
-0.126 18 c 5.06888 

0.00535 + j.02002 

0.40701 - j.23466 
- I .8844 - j2.0 154 

2.4043 t jl. 1770 
1.0613 t j.36838 

-0.38721 - j.30758 
-0.12582 t j.06842 

0.00573 t j.01956 
0.00829 - j.0 1047 
0.00102 -- j.00058 

A symmetric excitation is considered (a = n/2) together with the parameters q = 1, 
kw = 271. In this case the kernel does not depend on /s - tl only. In Table III we 
present the expansion coefficients for N = 8, 12, 16, respectively. Convergence is 
again very fast, and rather small matrices must be used. 
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